
Analysis of the efficiency PETSc and PETIGA
libraries in solving the problem of crystal growth

Ilya Starodumov1, Evgeny Pavlyuk2, Leonid Klyuev3, Maxim Kovalenko4, and
Anton Medyankin1

1 Laboratory of Multi-scale Mathematical Modelling, Ural Federal University, 620075
Ekaterinburg, Russia, ilya.starodumov@urfu.ru

2 Department of Computational Mathematics, Ural Federal University, 620075
Ekaterinburg, Russia, evgeny.pavluk@urfu.ru

3 Immers Ltd., Michurinskiy Ave, 19, bld. 3, 119192, Moscow, Russia,
www.immers.ru, l.klyuev@immers.ru

4 The Program Systems Institute of RAS, 152020 Pereslavl-Zalessky, Russia,
kovalenko@botik.ru

Abstract. We present an analysis of high performance computational
method for solving the problem of crystal grows. The method uses PETSc
and PETIGA C-language based libraries and supports parallel comput-
ing. The evolution of calculation process was studied in a series of special
computations are obtained on innovative cluster Immers. The results of
research confirm the high efficiency of the proposed algorithm on multi-
core computer systems and allow us to recommend the use of PETSc
and PETIGA for solving high order differential equations.
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1 Introduction

Applications involving differential operators of order greater than two have not
historically lent themselves well to finite element analysis[3]. The variational
statements of such problems involve second derivatives, necessitating the use of
a globally C1− continuous basis. The difficulty in constructing general setting
bases has relegated the study of such equations to the subject of finite-differences
and spectral methods, both of which are viable methods, but far more limited
than FEA in their scope and flexibility. With isogeometric analysis, we have
a higher-order accurate, robust method with tremendous geometric flexibility
and compactly supported basis functions, all while maintaining the possibility
of higher-order continuity. Thus, it is a convenient technology for the study of
equations involving higher-order differential operators[8].

1.1 Phase field models

Two different approaches have been used to describe phase transition phenom-
ena: sharp interface models and phase-field(diffuse-interface) models[7]. Tradi-



tionally, for describing the evolution of interfaces, such as the liquidsolid inter-
face, has been used sharp-interface models. Such an approach requires the resolu-
tion of a moving boundary problem, separate differential equations hold in each
phase, and certain quantities may suffer jump discontinuities across the inter-
face. Phase-field models provide an alternative description for phase-transition
phenomena by approximating the interface as being diffuse such that it does not
need to be tracked explicitly.An alternative description for phase-transition phe-
nomena was provided by phase-field models. Such models can be derived from
classical irreversible thermodynamics. Developed by K. R. Elder et al. as recently
as 2002[5, 4] the PFC model, which shares many features with the CDFT (the
classical density functional theory) of freezing, was presented as an extension of
the PF models to study processes with smaller length scales.Essential progress
has been made in the simulation of the parabolic PFC-equation[9–11], special
efforts are required to solve numerically the modified (hyperbolic) PFC-equation
due to the second-order time derivative of the equation. One of the challenges to
PFC has been modeling different close-packed crystal structures[6]. Such a task
in three-dimensional case will be considered in the current article further.

1.2 The modified phase field crystal problem

The modified phase field crystal model describes a continuous atomic density
field φ(x, t) and it is expressed by the sixth order in space and second order in
time equation:
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where t is the time, τ is the relaxation time of the atomic flux to its stationary
state, and µ represents the chemical potential, which may be obtained from the
free-energy functional
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associated to the domain Ω. The chemical potential is simply the variational
derivative of the free-energy functional F , namely

µ(φ) =
δF
δφ

= f ′(φ) + 2∇2φ+∇4φ. (3)

The function f represents the homogeneous part of the free energy density, and
takes on the form
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Here, ε = (Tc − T )/Tc is the undercooling, where T and Tc are the temperature
and critical temperature of transition, respectively. α is a coefficient which is a
measure of metastability.



2 Computational experiments

The modified PFC equation is a hyperbolic differential equation of the sixth
order. The solution of this equation from the computational point of view is
not an easy task. Therefore, we developed special numerical algorithm using a
C-language code based on the PETIGA library[2]. This software can be repre-
sented as an extension of PETSc[1] that adds the utilization of IGA capability.
PETSc is a suite of data structures and routines that provide frames to develop
large-scale application codes on parallel computers and consists of parallel linear
and nonlinear equation solvers and time integrators[12]. Therefore we created
a program with abilities for the use on high perfomance computational cluster.
To assess the performance of the computational program, we developed a series
of experimental tasks. The main task was to investigate the efficiency of the al-
gorithm parallelization. Thus, we made 3 types of experiments on homogeneous
HPC cluster Immers. The cluster configuration includes 5 computational nodes
connected by Infiniband QDR network of 40 GB/sec. Each compute node con-
sists of two 14-core processor Intel E5-2697 v3 and 64GB of DDR4 RAM. In all
experiments, the program calculated the task for 1 time step.

2.1 First experiment

The purpose of the first experiment is evaluation of dependence the complexity
of the problem from the amount of finite elements. Fixed parameters for this
experiment are: computational domain size 160x160x160 and using of 5 nodes
including 28 processor cores on each node. Variable parameter is a grid size:
10x10x10, 20x20x20, 40x40x40, 80x80x80, 160x160x160. Results of the experi-
ment are presented in the following figures:

a) Growth of the size of the problem and calculation time

Fig. 1: Total memory used, bytes.



Fig. 2: Total flops.

Fig. 3: MPI message total lengths , bytes.

Fig. 4: Maximum computational time for a single core, sec.



b) MPIBarrier call time

Fig. 5: Percentage of MPIBarrier call time in the maximum computation time
for a single core.

c) Some indicators of the balance

Fig. 6: [Blue]The ratio of the maximum time for a single core to a minimum.
[Red]The ratio of the maximum memory usage to a minimum during the calcu-
lation. [Green]The ratio of the maximum flops indicator to a minimum during
the calculation.



c) Network activity

Fig. 7: Percentage of MPI messages in maximum computation time for a single
core.

2.2 Second experiment

The purpose of the second experiment is the assessment of the efficiency of the
algorithm parallelization by increasing the number of computing nodes. Fixed
parameters for this task are: computational domain size 160x160x160 and the
grid size 50x50x50. Variable parameter is the number of nodes: from 1 to 5
nodes included 28 processor cores on each node. Results of the experiment are
presented in the following figures:

a) Growth of the size of the problem and calculation time

Fig. 8: Total memory used, bytes.



Fig. 9: Total flops.

Fig. 10: MPI message total lengths , bytes.

Fig. 11: Maximum computational time for a single core, sec.



b) MPIBarrier call time

Fig. 12: Percentage of MPIBarrier call time in the maximum computation time
for a single core.

c) Some indicators of the balance

Fig. 13: [Red]The ratio of the maximum time for a single core to a minimum.
[Green]The ratio of the maximum memory usage to a minimum during the cal-
culation. [Blue]The ratio of the maximum flops indicator to a minimum during
the calculation.



c) Network activity

Fig. 14: Percentage of MPI messages in maximum computation time for a single
core.

2.3 Third experiment

The purpose of of the third experiment is estimation of efficiency of the
algorithm parallelization by increasing the number of cores on single node.
Fixed parameters for this task are: only one node, computational domain
domain size 160x160x160 and the grid size 50x50x50. Variable parameter is the
number of cores on single node: from 1 to 28. Results of the experiment are
presented in the following figures:

a) Growth of the size of the problem and calculation time

Fig. 15: Total memory used, bytes.



Fig. 16: Total flops.

Fig. 17: MPI message total lengths , bytes.

Fig. 18: Maximum computational time for a single core, sec.



b) MPIBarrier call time

Fig. 19: Percentage of MPIBarrier call time in the maximum computation time
for a single core.

c) Some indicators of the balance

Fig. 20: [Red]The ratio of the maximum time for a single core to a minimum.
[Green]The ratio of the maximum memory usage to a minimum during the cal-
culation. [Blue]The ratio of the maximum flops indicator to a minimum during
the calculation.



c) Network activity

Fig. 21: Percentage of MPI messages in maximum computation time for a single
core.

3 Conclusions

During computing the tasks the cluster Immers showed the best performance
4.45E+09 Flops/sec, 3.68E+09 Flops/sec and 8,03E+08 Flops/sec for the first,
second and third experiments, respectively.The experiments results suggest the
following conclusions:

3.1 Estimating the size of the problem and the computation time

In the first experiment, the total memory usage, the total number of operations
and the total size of messages MPI grow exponentially. These indicators are
rising at roughly the same speed. In the second experiment, the total amount
of memory used and the total size of MPI messages almost unchanged. The
total number of operations is slightly reduced, and this process requires further
study. The computation time is also reduced with a logarithmic rate as
expected. In the third experiment, there is a large variation in the total
amount of memory used - this effect requires further study. Variations in the
total number of operations and the total amount of MPI message, apparently
associated to variations from memory. Computational time is change expected.

3.2 Balancing

In the first experiment, variation in the memory up to 40%, the number of
operations up to 60%. In the second experiment, variation in the memory up to
20%, the number of operations up to 35%. In the third experiment, variation in
the memory up to 28%, the number of operations up to 55%. The indicators
seem to be unexpectedly large and require further research.



3.3 Overhead

The overhead of synchronization, as expected, increases with increasing
amounts of computing nodes and decreasing the size of the grid. Meanwhile,
the proportion of execution time MPI Barrier in total computation time is less
than 0.001%, which is quite a bit.
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