Элементно-конструктивная база реконфигурируемых суперкомпьютеров

Введение

При создании реконфигурируемых суперкомпьютеров используются современные программируемые логические интегральные схемы (ПЛИС). В настоящее время ПЛИС разрабатывают и производят несколько зарубежных фирм. Большую часть мирового рынка ПЛИС занимают фирмы Xilinx и Altera, такие фирмы как Atmel и Lattice, Actel и Achronix занимают на рынке сегменты размером в несколько процентов каждая. При построении реконфигурируемых суперкомпьютеров ФГУП "НИИ "Квант" применяет ПЛИС, развиваемые компанией Xilinx. Ниже в табл. 1 приводятся основные характеристики современных и перспективных ПЛИС фирмы Xilinx [1].

Табл. 1 Основные характеристики современных и перспективных ПЛИС фирмы Xilinx

ПЛИС	Logic Cells	BRAM (36Kb)	Частота (МГц)
XC7K410T	406720	795	600
XC7V2000T	1954560	1292	600
XCKU060	580000	1080	650
XCKU075	725000	1350	650
XCKU115	1160880	2160	650
XCVU160	1621200	3276	650

Основными и наиболее технически сложными компонентами, на базе которых строятся реконфигурируемые суперкомпьютеры, являются реконфигурируемый вычислительный модуль (плата содержащая ПЛИС) и реконфигурируемый вычислительный блок (набор плат с ПЛИС с соответствующей инфраструктурой элек-

тропитания, охлаждения и мониторинга). В докладе рассмотрены компоненты реконфигурируемых суперкомпьютеров, выполненные на ПЛИС.

1. Реконфигурируемые вычислительные модули

Конструкция реконфигурируемого вычислительного модуля (РВМ), содержащего 8 ПЛИС была разработана в 2011 году для семейства ПЛИС Virtex-6. Затем на ее базе был создан целый ряд РВМ (см. рис 1.). При этом все разрабатываемые решения оставались совместимы с уже проверенными на практике конструктивными и техническими решениями. Главным достоинством такого подхода является значительное сокращение срока проектирования и изготовления нового РВМ, а также программная совместимость с разработанным ранее ПО. Технология проектирования отработанная в процессе создания ряда РВМ позволяет сократить срок проектирования до 3-4 месяцев.

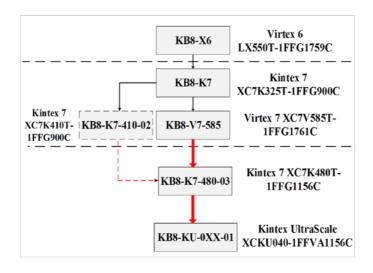


Рис.1 Последовательность создания ряда РВМ

Предварительная стадия проекта PBM включает изучение технической документации, предварительную оценку технико-экономических параметров. При выборе элементной базы необходимо учитывать сроки выхода на рынок инженерных и производственных образцов ПЛИС, возможность раннего доступа к средствам САПР и технической документации, необходимой для проектирования. При прочих равных условиях выбирается ПЛИС, который раньше появляется на рынке. Это позволяет быстрее перейти к выпуску PBM на новой элементной базе и улучшить технико-экономические параметры изделий [4]. Внешний вид PBM показан на Рис. 2.

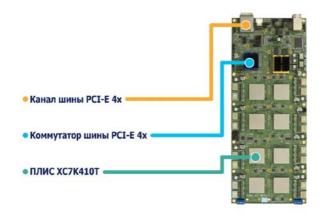


Рис. 2 Внешний вид РВМ

Структурная схема модуля на базе ПЛИС Kintex Ultrascale KB8-KU-075-01 «Топаз-3» приведена на Рис. 3.

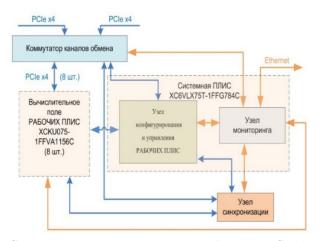


Рис. 3 Структурная схема модуля на базе ПЛИС Kintex Ultrascale KB8-KU-075-01 «Топаз-3»

Системная ПЛИС и 8 рабочих ПЛИС подключены к коммутатору PCI Express, реализованному на микросхеме PEX8648 (12 портов х4) фирмы PLX Technology. Объединение ПЛИС реализовано по схеме «звезда». Дополнительно все ПЛИС объединены в кольцо (Rocket IOх4), что позволяет организовать высокоскоростной канал обмена данными. Кроме этого, все ПЛИС подключены к общей шине для организации управления. Загрузку конфигурационных данных в рабочие ПЛИС осуществляет сервисная ПЛИС через 8 независимых каналов в режиме Slave Serial. Для организации мониторинга основных компонентов на плате реализован внешний сетевой интерфейс Ethernet, а для связи с внешними PCI Express устройствами – два канала PCIex4.

2. Реконфигурируемые вычислительные блоки

В состав каж дого реконфигурируемого вычислительного блока (РВБ), разработанного в ФГУП «НИИ «Квант», входят два реконфигурируемых вычислительных модуля, источник питания и элементы воздушного охлаж дения (вентиляторы). Каж дый РВМ в свою очередь имеет одну системную и восемь рабочих ПЛИС. Со-

временные РВБ построены на базе ПЛИС семейства Kintex-7 XC7K410T. Внешний вид РВБ представлен на рис. 4. В перспективном РВБ используется элементная база нового поколения Kintex UltraScale. В ООО «НПО Роста» также разработан ряд современных и перспективных РВМ и РВБ. Особенностью конструкции этих изделий является применение ПЛИС высокой логической емкости. При этом РВМ содержит четыре ПЛИС, РВБ- восемь.

Рис. 4 Внешний вид РВБ

Основные характеристики современных и перспективных РВБ представлены в табл. 2.

Табл. 2 Основные характеристики современных и перспективных РВБ

Современные РВБ		Перспективные РВБ				
РВБ-		РВБ-	РВБ-			
KB16-K7-		KB16-	KB16-			
410	RB-8V7	KU-060	KU-075	RB-8KU	RB-8KV	
Разработчик						
ФГУП	000	ΦГУП	ФГУП	000	000	
«НИИ	«НПО	«НИИ	«НИИ	«НПО	«НПО	
«Квант»	Роста»	«Квант»	«Квант»	Роста»	Роста»	
Тип ПЛИС						
ХС7К410Т	XC7V2000T	XCKU060	XCKU075	XCKU0115	XCVU160	
Количество ПЛИС в РВБ						
16	8	16	16	8	8	

Заключение

В докладе рассмотрены компоненты реконфигурируемых суперкомпьютеров. При проектировании вычислительных модулей необходимо обеспечить преемственность и совместимость с уже проверенными на практике конструктивными и техническими решениями. Это позволяет существенно сократить сроки проектирования. При выборе элементной базы необходимо учитывать сроки выхода на рынок инженерных и производственных образцов ПЛИС, возможность раннего доступа к средствам САПР и технической документации, необходимой для проектирования. Это позсвоевременно переходить на новую элементноконструктивную базу, обладающую лучшими экономическими характеристиками. К настоящему времени специалистами ФГУП «НИИ «Квант» разработаны современные компоненты реконфигурируемых суперкомпьютеров, построенные на базе ПЛИС семейства Kintex-7 XC7К410T и перспективные, использующие элементную базу нового поколения Kintex UltraScale.

Список литературы

- [1] Xilinx XMP102 (v1.4). September 2014.
- [2] Елизаров С.Г., Лукьянченко Г.А., Корнеев В.В. Создание вычислительной системы для моделирования суперкомпьютера с производительностью экзафлопсного уровня. // «НСКФ-2012».
- [3] Г.С. Елизаров, В.С. Горбунов, А.Г. Титов. Аппаратнопрограммная платформа моделирующей гетерогенной ВС (МГВС). // «НСКФ-2013».
- [4] Г.С. Елизаров, В.С. Горбунов, А.Г. Титов. Применение ПЛИС Xilinx UltraScale для создания высокопроизводительных реконфигурируемых суперкомпьютеров. // «НСКФ-2014».