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Hello my name is Yury Rumyanstev, I am FPGA and Sofware engineer at Rosta, Russian 
company based in Moscow. I will present details of HPC implementation of scientific 
computational algorithm named Microtubule modeling on FPGA using Vivado HLS tool. 
This algorithm belongs to molecule dynamics class and runs on multicore CPU for very 
long time. Using FPGA we achieved 15 times speedup. 
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My presentation will be as follows. First, I will briefly introduce Rosta, company I work 
for and describe hardware platform used for computation. Then I will generally talk 
about what is microtubule, why there is a need to model it and describe physical 
algorithm. After that, I will focus on Vivado HLS implementation of computational 
algorithm in C language. I will explain how we created computational pipelines and how 
we organized data to keep it running every cycle. Then I speak about challenges we 
faced during implementation in Vivado. And finally I will sum up my experience and give 
a hint on future work. 
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Rosta was established in 1993 and started from distribution of Transtech and Myricon
technologies in Russia. Soon after that Rosta switched to design its own devices and 
started working with Xilinx since 2000. 
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Main business was always about HPC accelerator cards. Rosta always followed Xilinx and 
created devices on all Virtex families also moving from PCI bus to PCI Express gen3. Our 
latest prototype device has Kintex UltraScale FPGA.
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But today I’ll talk about Virtex 7 computing platform. It is 1U form factor block to be 
installed in rack and consists of 8 Virtex-7 2000T FPGA and has  PCI Express interface to 
host PC over optical cables.  
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Inside there are two identical RC47 boards with 4 FPGA. Each FPGA has PCIe gen2 x4 
interface to PCI Express switch. Also 1GB of DDR3 memory are connected to each FPGA.
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Connection to host PC is performed using two optical cables that connect two RC47 
boards with PCIe adapter installed in host PC motherboard. Software running on PC sees 
our block as 8 independent PCIe FPGA devices. 
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Our programming model is very close to OpenCL. We have host that is connected to 
FPGA Compute device. FPGA has external DDR3 memory. On FPGA side we have Board 
Support Package with PCIe DMA, DDR controller, Internal AXI bus and template for 
connecting Vivado HLS core. On top level HLS core has the following interface described 
in C language. Bus pointer interface is used to access DDR memory through AXI bus. Our 
problem size was not big so external DDR was used only for IO with host. 
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Microtubules are molecular structures that can be found in any biological cell during its 
division and are represented by long cylinders, made of tubulin heterodimers. 
Microtubules are dynamically unstable, that is they exhibit sudden transitions between 
phases of slow growth and rapid shortening and vice versa. 
In dividing cells dynamic microtubules are responsible for search and capture of 
chromosomes, their delivery to cell equator and subsequent segregation between 
daughter cells. Inhibition of this process can prevent cell division. This fact makes 
microtubules one of the most successful targets of modern anti-cancer therapy. 
Our colleagues from Physics Department of Moscow State University have developed a 
molecular dynamic model  of microtubule. Essential part of this model is that it takes 
into account heat Brownian motion and thus should be calculated with time step of 0.2 
ns. They implemented this model using on multicore CPU. With this approach, it takes 
twenty microseconds of real time to model one time step of 0.2 ns. Problem is that to 
get new scientific data abound 100 sec of microtubule lifetime should be modeled which 
results in 100 days of computing! Using FPGA we managed to speedup computation 15 
times, which makes FPGA more desirable candidate for such simulations.
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So let’s have a look at mathematical model. In the upper left corner, there is electronic 
photo of MT. You can see a cylinder consisting of 13 vertical lines of monomers 
organized into so called protofilaments. 
Position and orientation of each monomer is defined by three coordinates: (xi, yi, τi), 
where xi and yi are positions of the center of the subunit and τi is the orientation angle. 
Monomers interact at four contact points with the neighboring subunits: there are two 
longitudal and two lateral bonds per monomer. We will address them as longitudal up 
and down bonds and lateral left and right bonds.

Our task was to calculate evolution of system. Have a look at animation made in 
MATLAB. It is built on results obtained with our final implementation. Please don’t take 
into account flying parts. Sometimes longitudal bonds can break and upper part of PF 
detaches from MT. We just had no time to update software to remove them from 
animation. 
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Let’s move on to algorithm. We have period of time divided into time steps. On each 
time step first we have to compute all forces between molecules. We compute them as 
gradients of interaction energy which depends only on coordinates. After we know 
forces we can update coordinates. Physical effect can be found after modeling during 
hundreds of seconds with step equal to 0.2 ns. It means we have to go over 5 multiply 
by 10 to 11 power of iterations.
Let’s take a look at coordinates update equation. This part describes deterministic part 
of algorithm. But our model also takes into account Brownian motion by adding 
normally distributed random number. We need quite a lot of random numbers. We can 
not afford loading them from host – in this case there will be no acceleration. Instead, 
we implemented pseudo random number generators inside FPGA. 
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But let’s talk first about deterministic part of algorithm and force computation. 
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On the picture circles represent molecules and blue rectangles represent interaction 
forces. Force computation can be represented by C function which takes two molecules 
coordinates  as inputs and produces two forces represented by pointer arguments as 
outputs. This function is synthesized as good pipeline with one cycle initiation interval 
and 136 cycles latency. 
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The same can be done with longitudal forces but with slightly different latency. 
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Ok now we have force computation pipelines and we start pushing molecule coordinates 
into them. I start from the bottom right  corner of microtubule. On first step I load 
coordinates of 3 molecules from local memory and push them to pipeline. 
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On next clock cycle I load coordinates of the next 3 molecules to the left from memory 
and push them to pipeline. And then move on position by position from right to left. 
When I reach the end of the first row I switch to second row and continue. From C 
language point of view this is nothing but nested for loop. When after initial latency 
pipeline starts produce force data on its output  it is used to update molecule 
coordinates. On bottom row I have boundary condition (represented by yellow 
rectangles), down force components of these molecules are zero. To update coordinates 
of current molecule we need four components of forces around it. Computed forces for 
neighboring molecules are saved and passed to next computational steps. For example 
this lateral right force value will be used to update coordinates of molecule on the left 
on next cycle. On this slide this force is red. 
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Now we have pipeline, let’s see how to keep it busy. Every time iteration pipeline 
updates all molecule coordinates. We have relatively small number of molecules so all 
coordinates are stored in local BRAM. We need to load from BRAM coordinates of three 
molecules every cycle. Coordinates are stored in the following data type structure in two 
dimensional array. Using Vivado HLS DATA PACK directive I have concatenated all 
structure fields into one word 12 bytes wide. VHSL array is implemented as dual port 
BRAM so I can read 24 bytes each cycle, but my pipeline need 36 bytes. So I have used 
ARRAY PARTITION directive to split data into two different BRAM cores to access it in 
parallel. 
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After synthesis I got the following utilization. HLS core used 9% of DSP, 3% of FF and 11 
%of LUT of Virtex7 2000t silicon. 
As to performance, key value here is time iteration latency. It equals to sum of pipeline 
latency and number of molecules. Latency was equal to 187 cycles, number of 
molecules was 152. The pipleline was running at 200 MHz so it took 1.7 micosecond to 
compute one time iteration. 
We can see that there is a lot of logic left untouched in silicon so I could increase 
performance by adding more computational pipelines to process several molecules in 
parallel. 
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From point of view of the algorithm it is possible to compute ALL molecule coordinates 
in parallel. But It will require too much hardware. I chose to limit my scheme to 3 
pipelines to compute 3 molecules in parallel. 
Again, I start from the bottom right corner of mictotubule. I load 7 molecule coordinates 
from BRAM and push them to three pipelines, these 3 molecules to first pipeline, these 
three to second and these 3 to third. 
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On next clock cycle I advance one molecule to the left just as with one pipeline scheme. 
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As expected, this computational scheme requires 3 times more hardware. Pipeline 
latency remains the same. Major difference is that now I need more bandwidth to local 
BRAM as compute scheme requires coordinates of 7 molecules every cycle. So I changed 
the parameter in ARRAY PARTITION directive and split my array into 4 different BRAM 
cores in cyclic fashion. 
Now iteration latency is represented by this formula. There is still latency of pipeline, but 
now each of three pipeline  should process 3 times less molecules. This leads to 1.2 
microseconds per time iteration.
Theoretically I could go further and try to implement 6 or even more pipelines so long I 
have spare hardware. But it won’t add much performance because of initial pipeline 
latency that will still be there. It’ll be impossible to get iteration latency less then 1 
microsecond, but instead there will be more timing issues during implementation in 
Vivado. So I decided that I was happy with 1.2 microseconds with is already 15 times 
faster than original implementation on muticore CPU. 



23

Final challenge on Vivado HLS level was to account for Brownian motion. It is modeled 
as small random addition to deterministic part of coordinates update. This random 
addition is normally distributed random number multiplied by constant. Each cycle 3 
molecules coordinates are updated so we need 9 random numbers per clock cycle. We 
generated pseudo random numbers inside FPGA using the following algorithm.
First generate two uniformly distributed numbers, second apply Box-Muller transform 
and get two normal numbers. We used Mersenne Twister algorithm for generating 
uniformly distributed numbers. It is complex and proven algorithm with huge period. It 
uses internal memory buffer. To get new number algorithm reads 3 words from it and 
writes one word back. We had hard times to make Vivado HLS fit these operations in 
one clock cycle but finally managed to do that. After that it was straightforward 
conversion using these formulas. 
One such block after synthesis  occupied 2% of DSP resources 0.4 % of FF, and 1 % of 
LUT.  We needed 5 such blocks.
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That is all I have to say about mathematical aspect of problem and implementation in 
Vivado HLS. At this point we had synthesized working FPGA model which was verified 
against golden results obtained with CPU program. Our next step was to implement this 
model on FPGA using our Board Support Package.
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Let me remind that we have big silicon Virtex7 2000T FPGA that consists of 4 Super Logic 
Regions – separate silicon dies connected over interposer. Inside we have PCIe DMA, 
external memory controller, AXI bus and template for connecting Vivado HLS core. Pure 
BSP with small HLS core consumes little logic. The main problem was to implement HLS 
core.

Only deterministic part of algorithm without random number core utilizes lots of 
recourses – 28% of DSP blocks and 33% of LUTs. This core cannot fit into one SLR, which 
is Xilinx recommendation in fact. My first attempt was to implement only deterministic 
part in hardware. And it actually worked. But after I added random number generation 
timing score was very bad and hardware failed to operate properly. I understood that I 
need to separate HLS cores and floorplan my design. I come up with the idea to split 
deterministic and random number generation parts into separate HLS cores and put 
them into different logic regions. 
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So I chose the following scheme. I created two pBlocks: pBlock_base and pblock_hls. I 
put PCIe, DDR and random numbers logic into pBlock_base and constrained it to logic 
region two. pBlock_hls that contained main hls core was constrained to logic regions 
zero and one.
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On this slide you can see implementation results. RED is PCIe DMA and DDR logic,  
purple is random hls core and cyan is main hls core. 
This approach proved to work in hardware but there was more to it than just 
floorplanning to get it working. 
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To get things done and obtain repetitive results we faced the following issues.
On this slide I want to thank Xilinx and personally Sergei Storojev and John Blaine for 
helping with design timing closure. 
Lets discuss first three issues in more details.
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DSP usage. In my code there were constructions like that. You see 4 add sub and 3 
multiply operations on one line of C code. Each operation requires separate hardware 
block which will be implemented using Xilinx floating point IP core. This IP has 
parameter that controls DSP block usage for it. And Vivado HLS has resource directive 
that can be used to control this parameter. In my case I didn’t want to use DSP recourses 
at all so I had to apply resource directive with nodsp parameter. Also current Vivado HLS 
functionality is to apply resource directive to specific operation represented by 
individual variable, so I had to rewrite my code by hand and get 7 lines instead of 1. Also 
I had to apply 7 different directives for different variables. Actually It is very 
inconvenient. My code was long and I spent a lot of time to rewrite it in one operation –
one variable fashion. And here I have suggestion to be able to apply resource directive to 
all cores inside a function. 
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Another problem was to deal with SLR crossing nets. . Here you see Block Design that 
was used to wrap main hls core. Random generator hls core and ddr3 controller were 
located in different logic regions. There were nets that crossed SLR boundary. These are 
AXI Master bus nets that were used by hls core to access external memory and AXI 
Stream nets that were used to pass random numbers from one hls core to another. All 
nets should be registered on both sides of SLR boundary For AXI Master nets it was easy 
to do using Enable Register Slice option of AXI Interconnect IP. And for AXI Stream nets I 
had to insert different IP called AXI Stream Register Slice on RTL level – not shown here. 
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This is the last problem I want to mention. First implementation results showed lots of 
very long combinatorial nets driving BRAM address input of HLS memory arrays. HLS 
Resource directive can be used to increase read latency of these arrays. It is nothing that 
just this line. Realy nothing more. And suddenly problem disappeared. And this is magic 
that does Vivado HLS. It automatically adjusts control state machine and reschedules all 
operations to match new read latency. 
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I want to finish my presentation. Main conclusion that I can make it that Vivado HLS is 
capable of HPC. We took real complex scientific problem and not only made it work on 
FPGA but achieved 15 times speedup compared to multicore CPU implementation. We 
even beat GPU, but it is different story. 

Another point is big FPGA. On the one hand, it gives us freedom, we have lots of 
hardware and can implement big algorithms. On the other hand, we need to pay 
attention on SLR issues. 

We are on step of obtaining new scientific results using our accelerated implementation.

Our Future technical plan is to go for SDAccel. Rosta has new board with Kintex
Ultrascale silicon. Right now we are working on creating SDAccel BSP for this board. We 
will try to implement this algorithm both on OpenCL and using regular Vivado HLS way 
on SDAccel BSP. 


